- · 机器人版面费是多少[04/09]
- · 《机器人》投稿方式[04/09]
- · 《机器人》数据库收录影[04/09]
- · 《机器人》期刊栏目设置[04/09]
机器人论文的研究方法(机器人论文的研究方法(3)
作者:网站采编关键词:
摘要:对于神经网络而言,目标函数具有合成的形式。那么如何计算梯度呢?一般情况下有两种常见的方法: 1)微分分析法。当你知道这个函数的形式时,你只
对于神经网络而言,目标函数具有合成的形式。那么如何计算梯度呢?一般情况下有两种常见的方法:
1)微分分析法。当你知道这个函数的形式时,你只需要用链式法则计算导数即可;
2)用有限差分方法来近似微分。这种方法的计算量很大,因为函数评估的数量是O(N),其中N是参数的数量。与微分分析法相比,这是比较昂贵的。不过,有限差分通常在调试时验证后端实现。
2、随机梯度下降
一个直观理解梯度下降的方法是去想象一条溯源山顶的河流。这条河流会沿着山势梯度的方向流向山麓下的最低点。
如果让人来走,可能就不一样了,你可能会先随便选一个方向,然后沿着这个方向的梯度向下走;过一会儿再随机换一个方向向下走;最后你发现自己差不多也到了谷底了。
数学化的理解就是:
随机梯度下降主要用来求解类似于如下求和形式的优化问题:
梯度下降法:
当n很大时,每次迭代计算所有的梯度会非常耗时。随机梯度下降的想法就是每次在Delta f_i 中随机选取一个计算代替上面的Delta f_i,以这个随机选取的方向作为下降的方向。这样的方法反而比梯度下降能够更快地到达(局部)最优解。
3、学习率衰减
在训练模型的时候,通常会遇到这种情况:我们平衡模型的训练速度和损失(loss)后选择了相对合适的学习率(learning rate),但是训练集的损失下降到一定的程度后就不在下降了,比如training loss一直在0.7和0.9之间来回震荡,不能进一步下降。如下图所示:
遇到这种情况通常可以通过适当降低学习率(learning rate)来实现。但是,降低学习率又会延长训练所需的时间。
学习率衰减(learning rate decay)就是一种可以平衡这两者之间矛盾的解决方案。学习率衰减的基本思想是:学习率随着训练的进行逐渐衰减。
学习率衰减基本有两种实现方法:
线性衰减。例如:每过5个epochs学习率减半;
指数衰减。例如:每过5个epochs将学习率乘以0.1。
4、dropout
在当前的大规模神经网络中有两个缺点:
费时;
容易过拟合
Dropout 可以很好地解决这个问题。Dropout说的简单一点就是在前向传导的时候,让某个神经元的激活值以一定的概率p停止工作,示意图如下:
每次做完dropout,相当于从原始的网络中找到一个更瘦的网络。
Hinton在其论文中做了这样的类比,无性繁殖可以保留大段的优秀基因,而有性繁殖则将基因随机拆了又拆,破坏了大段基因的联合适应性;但是自然选择了有性繁殖,物竞天择,适者生存,可见有性繁殖的强大。dropout 也能达到同样的效果,它强迫一个神经单元,和随机挑选出来的其他神经单元共同工作,消除减弱了神经元节点间的联合适应性,增强了泛化能力。
5、max pooling
池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的向下采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。
直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。
6、批标准化
包括深度网络在内的神经网络需要仔细调整权重初始化和学习参数。批标准化使这些变得轻松许多。
权重问题:
无论权重的初始化如何,是随机的还是经验性的选择,它们离学习权重都会很远。考虑一个小批量,初期在所需的特征激活方面会有很多异常值。
深层神经网络本身是病态的,初始层中的微小扰动都会导致后面层的非常大的变化。
在反向传播过程中,这些现象会导致梯度弥散。这就意味着在学习权重产生所需要的输出前,必须对梯度的异常值进行补偿,这将导致需要额外的时段来收敛。
批量归一化使这些梯度从分散到正常值并在小批量范围内流向共同目标(通过归一化)。
学习率问题:一般来说,学习率需要保持较低的值,使得只有一小部分的梯度来校正权重,原因是要使异常激活的梯度不影响已学习到的激活。通过批量标准化,可以减少这些异常激活,因此也就可以使用更高的学习率来加速学习过程。
7、long short-term memory
文章来源:《机器人》 网址: http://www.jqrzzs.cn/zonghexinwen/2022/1209/2005.html
上一篇:大学学校是如何规定论文查重标准的
下一篇:机器人论文发表(机器人论文发表要求)